Bayesian selection of multiresponse nonlinear regression model
نویسندگان
چکیده
منابع مشابه
Bayesian Model Selection in Gaussian Regression
We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estim...
متن کاملInput selection and shrinkage in multiresponse linear regression
The regression problem of modeling several response variables using the same set of input variables is considered. The model is linearly parameterized and the parameters are estimated by minimizing the error sum of squares subject to a sparsity constraint. The constraint has the effect of eliminating useless inputs and constraining the parameters of the remaining inputs in the model. Two algori...
متن کاملBayesian Fuzzy Regression Analysis and Model Selection: Theory and Evidence
In this study we suggest a Bayesian approach to fuzzy clustering analysis – the Bayesian fuzzy regression. Bayesian Posterior Odds analysis is employed to select the correct number of clusters for the fuzzy regression analysis. In this study, we use a natural conjugate prior for the parameters, and we find that the Bayesian Posterior Odds provide a very powerful tool for choosing the number of ...
متن کاملBayesian model selection for logistic regression models with random intercept
Data, collected to model risk of an interesting event, often have a multilevel structure as patients are clustered within larger units, e.g. clinical centers. Risk of the event is usually modeled using a logistic regression model, with a random intercept to control for heterogeneity among clusters. Model specification requires to decide which regressors have a non-negligible effect, and hence, ...
متن کاملRegression Trees for Longitudinal and Multiresponse Data
Previous algorithms for constructing regression tree models for longitudinal and multiresponse data have mostly followed the CART approach. Consequently, they inherit the same selection biases and computational difficulties as CART. We propose an alternative, based on the GUIDE approach, that treats each longitudinal data series as a curve and uses chi-squared tests of the residual curve patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics
سال: 2008
ISSN: 0233-1888,1029-4910
DOI: 10.1080/02331880701739824